Feed aggregator
Looking under the hood at the brain’s language system
As a young girl growing up in the former Soviet Union, Evelina Fedorenko PhD ’07 studied several languages, including English, as her mother hoped that it would give her the chance to eventually move abroad for better opportunities.
Her language studies not only helped her establish a new life in the United States as an adult, but also led to a lifelong interest in linguistics and how the brain processes language. Now an associate professor of brain and cognitive sciences at MIT, Fedorenko studies the brain’s language-processing regions: how they arise, whether they are shared with other mental functions, and how each region contributes to language comprehension and production.
Fedorenko’s early work helped to identify the precise locations of the brain’s language-processing regions, and she has been building on that work to generate insight into how different neuronal populations in those regions implement linguistic computations.
“It took a while to develop the approach and figure out how to quickly and reliably find these regions in individual brains, given this standard problem of the brain being a little different across people,” she says. “Then we just kept going, asking questions like: Does language overlap with other functions that are similar to it? How is the system organized internally? Do different parts of this network do different things? There are dozens and dozens of questions you can ask, and many directions that we have pushed on.”
Among some of the more recent directions, she is exploring how the brain’s language-processing regions develop early in life, through studies of very young children, people with unusual brain architecture, and computational models known as large language models.
From Russia to MIT
Fedorenko grew up in the Russian city of Volgograd, which was then part of the Soviet Union. When the Soviet Union broke up in 1991, her mother, a mechanical engineer, lost her job, and the family struggled to make ends meet.
“It was a really intense and painful time,” Fedorenko recalls. “But one thing that was always very stable for me is that I always had a lot of love, from my parents, my grandparents, and my aunt and uncle. That was really important and gave me the confidence that if I worked hard and had a goal, that I could achieve whatever I dreamed about.”
Fedorenko did work hard in school, studying English, French, German, Polish, and Spanish, and she also participated in math competitions. As a 15-year-old, she spent a year attending high school in Alabama, as part of a program that placed students from the former Soviet Union with American families. She had been thinking about applying to universities in Europe but changed her plans when she realized the American higher education system offered more academic flexibility.
After being admitted to Harvard University with a full scholarship, she returned to the United States in 1998 and earned her bachelor’s degree in psychology and linguistics, while also working multiple jobs to send money home to help her family.
While at Harvard, she also took classes at MIT and ended up deciding to apply to the Institute for graduate school. For her PhD research at MIT, she worked with Ted Gibson, a professor of brain and cognitive sciences, and later, Nancy Kanwisher, the Walter A. Rosenblith Professor of Cognitive Neuroscience. She began by using functional magnetic resonance imaging (fMRI) to study brain regions that appeared to respond preferentially to music, but she soon switched to studying brain responses to language.
She found that working with Kanwisher, who studies the functional organization of the human brain but hadn’t worked much on language before, helped Fedorenko to build a research program free of potential biases baked into some of the early work on language processing in the brain.
“We really kind of started from scratch,” Fedorenko says, “combining the knowledge of language processing I have gained by working with Gibson and the rigorous neuroscience approaches that Kanwisher had developed when studying the visual system.”
After finishing her PhD in 2007, Fedorenko stayed at MIT for a few years as a postdoc funded by the National Institutes of Health, continuing her research with Kanwisher. During that time, she and Kanwisher developed techniques to identify language-processing regions in different people, and discovered new evidence that certain parts of the brain respond selectively to language. Fedorenko then spent five years as a research faculty member at Massachusetts General Hospital, before receiving an offer to join the faculty at MIT in 2019.
How the brain processes language
Since starting her lab at MIT’s McGovern Institute for Brain Research, Fedorenko and her trainees have made several discoveries that have helped to refine neuroscientists’ understanding of the brain’s language-processing regions, which are spread across the left frontal and temporal lobes of the brain.
In a series of studies, her lab showed that these regions are highly selective for language and are not engaged by activities such as listening to music, reading computer code, or interpreting facial expressions, all of which have been argued to be share similarities with language processing.
“We’ve separated the language-processing machinery from various other systems, including the system for general fluid thinking, and the systems for social perception and reasoning, which support the processing of communicative signals, like facial expressions and gestures, and reasoning about others’ beliefs and desires,” Fedorenko says. “So that was a significant finding, that this system really is its own thing.”
More recently, Fedorenko has turned her attention to figuring out, in more detail, the functions of different parts of the language processing network. In one recent study, she identified distinct neuronal populations within these regions that appear to have different temporal windows for processing linguistic content, ranging from just one word up to six words.
She is also studying how language-processing circuits arise in the brain, with ongoing studies in which she and a postdoc in her lab are using fMRI to scan the brains of young children, observing how their language regions behave even before the children have fully learned to speak and understand language.
Large language models (similar to ChatGPT) can help with these types of developmental questions, as the researchers can better control the language inputs to the model and have continuous access to its abilities and representations at different stages of learning.
“You can train models in different ways, on different kinds of language, in different kind of regimens. For example, training on simpler language first and then more complex language, or on language combined with some visual inputs. Then you can look at the performance of these language models on different tasks, and also examine changes in their internal representations across the training trajectory, to test which model best captures the trajectory of human language learning,” Fedorenko says.
To gain another window into how the brain develops language ability, Fedorenko launched the Interesting Brains Project several years ago. Through this project, she is studying people who experienced some type of brain damage early in life, such as a prenatal stroke, or brain deformation as a result of a congenital cyst. In some of these individuals, their conditions destroyed or significantly deformed the brain’s typical language-processing areas, but all of these individuals are cognitively indistinguishable from individuals with typical brains: They still learned to speak and understand language normally, and in some cases, they didn’t even realize that their brains were in some way atypical until they were adults.
“That study is all about plasticity and redundancy in the brain, trying to figure out what brains can cope with, and how” Fedorenko says. “Are there many solutions to build a human mind, even when the neural infrastructure is so different-looking?”
Vote for “How to Fix the Internet” in the Webby Awards People's Voice Competition!
EFF’s “How to Fix the Internet” podcast is a nominee in the Webby Awards 29th Annual People's Voice competition – and we need your support to bring the trophy home!
We keep hearing all these dystopian stories about technology’s impact on our lives and our futures — from tracking-based surveillance capitalism to the dominance of a few large platforms choking innovation to the growing pressure by authoritarian governments to control what we see and say. The landscape can feel bleak. Exposing and articulating these problems is important, but so is envisioning and then building a better future.
That’s where our podcast comes in. Through curious conversations with some of the leading minds in law and technology, “How to Fix the Internet” explores creative solutions to some of today’s biggest tech challenges.
Over our five seasons, we’ve had well-known, mainstream names like Marc Maron to discuss patent trolls, Adam Savage to discuss the rights to tinker and repair, Dave Eggers to discuss when to set technology aside, and U.S. Sen. Ron Wyden, D-OR, to discuss how Congress can foster an internet that benefits everyone. But we’ve also had lesser-known names who do vital, thought-provoking work – Taiwan’s then-Minister of Digital Affairs Audrey Tang discussed seeing democracy as a kind of open-source social technology, Alice Marwick discussed the spread of conspiracy theories and disinformation, Catherine Bracy discussed getting tech companies to support (not exploit) the communities they call home, and Chancey Fleet discussing the need to include people with disabilities in every step of tech development and deployment.
We’ve just recorded our first interview for Season 6, and episodes should start dropping next month! Meanwhile, you can catch up on our past seasons to become deeply informed on vital technology issues and join the movement working to build a better technological future.
And if you’ve liked what you’ve heard, please throw us a vote in the Webbys competition!
Our deepest thanks to all our brilliant guests, and to the Alfred P. Sloan Foundation's Program in Public Understanding of Science and Technology, without whom this podcast would not be possible.
Click below to listen to the show now, or choose your podcast player:
%3Ciframe%20scrolling%3D%22no%22%20seamless%3D%22%22%20src%3D%22https%3A%2F%2Fplayer.simplecast.com%2F1c515ea8-cb6d-4f72-8d17-bc9b7a566869%3Fdark%3Dfalse%26amp%3Bshow%3Dtrue%22%20width%3D%22100%25%22%20height%3D%22480px%22%20frameborder%3D%22no%22%20allow%3D%22autoplay%22%3E%3C%2Fiframe%3E Privacy info. This embed will serve content from simplecast.comOr get our YouTube playlist! Or, listen to the episodes on the Internet Archive!
Trump names urologist as RFK’s deputy
Cell Phone OPSEC for Border Crossings
I have heard stories of more aggressive interrogation of electronic devices at US border crossings. I know a lot about securing computers, but very little about securing phones.
Are there easy ways to delete data—files, photos, etc.—on phones so it can’t be recovered? Does resetting a phone to factory defaults erase data, or is it still recoverable? That is, does the reset erase the old encryption key, or just sever the password that access that key? When the phone is rebooted, are deleted files still available?
We need answers for both iPhones and Android phones. And it’s not just the US; the world is going to become a more dangerous place to oppose state power...
Warren Buffett’s empire is shaping wildfire laws to shield utilities
EV battery recycler awarded DOE loan may go out of business
Trump admin cancels NIH scientific integrity policy
House Democrats call Trump’s FEMA plan ‘appalling’
Green groups sue New York for slow walking landmark climate law
The EV booster preparing to fight Trump’s messaging
EU exploring weaker 2040 climate goal
California’s insurer of last resort expands to cover multimillion-dollar properties
Democratic lawmaker introduces bill to delay California zero-emission bus mandate
California regulator recommends rejecting Shasta County wind project
Deep-dive dinners are the norm for tuna and swordfish, MIT oceanographers find
How far would you go for a good meal? For some of the ocean’s top predators, maintaining a decent diet requires some surprisingly long-distance dives.
MIT oceanographers have found that big fish like tuna and swordfish get a large fraction of their food from the ocean’s twilight zone — a cold and dark layer of the ocean about half a mile below the surface, where sunlight rarely penetrates. Tuna and swordfish have been known to take extreme plunges, but it was unclear whether these deep dives were for food, and to what extent the fishes’ diet depends on prey in the twilight zone.
In a study published recently in the ICES Journal of Marine Science, the MIT student-led team reports that the twilight zone is a major food destination for three predatory fish — bigeye tuna, yellowfin tuna, and swordfish. While the three species swim primarily in the shallow open ocean, the scientists found these fish are sourcing between 50 and 60 percent of their diet from the twilight zone.
The findings suggest that tuna and swordfish rely more heavily on the twilight zone than scientists had assumed. This implies that any change to the twilight zone’s food web, such as through increased fishing, could negatively impact fisheries of more shallow tuna and swordfish.
“There is increasing interest in commercial fishing in the ocean’s twilight zone,” says Ciara Willis, the study’s lead author, who was a PhD student in the MIT-Woods Hole Oceanographic Institution (WHOI) Joint Program when conducting the research and is now a postdoc at WHOI. “If we start heavily fishing that layer of the ocean, our study suggests that could have profound implications for tuna and swordfish, which are very reliant on the twilight zone and are highly valuable existing fisheries.”
The study’s co-authors include Kayla Gardener of MIT-WHOI, and WHOI researchers Martin Arostegui, Camrin Braun, Leah Hougton, Joel Llopiz, Annette Govindarajan, and Simon Thorrold, along with Walt Golet at the University of Maine.
Deep-ocean buffet
The ocean’s twilight zone is a vast and dim layer that lies between the sunlit surface waters and the ocean’s permanently dark, midnight zone. Also known as the midwater, or mesopelagic layer, the twilight zone stretches between 200 and 1,000 meters below the ocean’s surface and is home to a huge variety of organisms that have adapted to live in the darkness.
“This is a really understudied region of the ocean, and it’s filled with all these fantastic, weird animals,” Willis says.
In fact, it’s estimated that the biomass of fish in the twilight zone is somewhere close to 10 billion tons, much of which is concentrated in layers at certain depths. By comparison, the marine life that lives closer to the surface, Willis says, is “a thin soup,” which is slim pickings for large predators.
“It’s important for predators in the open ocean to find concentrated layers of food. And I think that’s what drives them to be interested in the ocean’s twilight zone,” Willis says. “We call it the ‘deep ocean buffet.’”
And much of this buffet is on the move. Many kinds of fish, squid, and other deep-sea organisms in the twilight zone will swim up to the surface each night to find food. This twilight community will descend back into darkness at dawn to avoid detection.
Scientists have observed that many large predatory fish will make regular dives into the twilight zone, presumably to feast on the deep-sea bounty. For instance, bigeye tuna spend much of their day making multiple short, quick plunges into the twilight zone, while yellowfin tuna dive down every few days to weeks. Swordfish, in contrast, appear to follow the daily twilight migration, feeding on the community as it rises and falls each day.
“We’ve known for a long time that these fish and many other predators feed on twilight zone prey,” Willis says. “But the extent to which they rely on this deep-sea food web for their forage has been unclear.”
Twilight signal
For years, scientists and fishers have found remnants of fish from the twilight zone in the stomach contents of larger, surface-based predators. This suggests that predator fish do indeed feed on twilight food, such as lanternfish, certain types of squid, and long, snake-like fish called barracudina. But, as Willis notes, stomach contents give just a “snapshot” of what a fish ate that day.
She and her colleagues wanted to know how big a role twilight food plays in the general diet of predator fish. For their new study, the team collaborated with fishermen in New Jersey and Florida, who fish for a living in the open ocean. They supplied the team with small tissue samples of their commercial catch, including samples of bigeye tuna, yellowfin tuna, and swordfish.
Willis and her advisor, Senior Scientist Simon Thorrold, brought the samples back to Thorrold’s lab at WHOI and analyzed the fish bits for essential amino acids — the key building blocks of proteins. Essential amino acids are only made by primary producers, or members of the base of the food web, such as phytoplankton, microbes, and fungi. Each of these producers makes essential amino acids with a slightly different carbon isotope configuration that then is conserved as the producers are consumed on up their respective food chains.
“One of the hypotheses we had was that we’d be able to distinguish the carbon isotopic signature of the shallow ocean, which would logically be more phytoplankton-based, versus the deep ocean, which is more microbially based,” Willis says.
The researchers figured that if a fish sample had one carbon isotopic make-up over another, it would be a sign that that fish feeds more on food from the deep, rather than shallow waters.
“We can use this [carbon isotope signature] to infer a lot about what food webs they’ve been feeding in, over the last five to eight months,” Willis says.
The team looked at carbon isotopes in tissue samples from over 120 samples including bigeye tuna, yellowfin tuna, and swordfish. They found that individuals from all three species contained a substantial amount of carbon derived from sources in the twilight zone. The researchers estimate that, on average, food from the twilight zone makes up 50 to 60 percent of the diet of the three predator species, with some slight variations among species.
“We saw the bigeye tuna were far and away the most consistent in where they got their food from. They didn’t vary much from individual to individual,” Willis says. “Whereas the swordfish and yellowfin tuna were more variable. That means if you start having big-scale fishing in the twilight zone, the bigeye tuna might be the ones who are most at risk from food web effects.”
The researchers note there has been increased interest in commercially fishing the twilight zone. While many fish in that region are not edible for humans, they are starting to be harvested as fishmeal and fish oil products. In ongoing work, Willis and her colleagues are evaluating the potential impacts to tuna fisheries if the twilight zone becomes a target for large-scale fishing.
“If predatory fish like tunas have 50 percent reliance on twilight zone food webs, and we start heavily fishing that region, that could lead to uncertainty around the profitability of tuna fisheries,” Willis says. “So we need to be very cautious about impacts on the twilight zone and the larger ocean ecosystem.”
This work was part of the Woods Hole Oceanographic Institution’s Ocean Twilight Zone Project, funded as part of the Audacious Project housed at TED. Willis was additionally supported by the Natural Sciences and Engineering Research Council of Canada and the MIT Martin Family Society of Fellows for Sustainability.
On a quest for a better football helmet
Next time you’re watching football you might be looking at an important feat of engineering from an MIT alumnus.
For the last year, former MIT middle linebacker and mechanical engineer Kodiak Brush ’17 has been leading the development of football helmets for the California-based sports equipment manufacturer LIGHT Helmets. In December, Brush notched a major achievement in that work: LIGHT Helmets’ new Apache helmet line was ranked the highest-performing helmet ever in safety tests by Virginia Tech’s renowned helmet-testing lab.
The ranking bolsters LIGHT Helmets’ innovative effort to make football helmets lighter and safer.
“We’re trying to lower the overall amount of energy going into each impact by lowering the weight of the helmet,” Brush says. “It’s a balancing act trying to have a complete, polished product with all the bells and whistles while at the same time keeping the mass of the helmet as low as possible.”
No helmet ensures total safety, and the NFL carries out helmet tests of its own, but for Brush, who played football for most of his life, the latest results were a rewarding milestone.
“It’s really cool to work in the football helmet space after playing the sport for so long,” Brush says. “We did this with a fraction of the research and development budget of our competitors. It’s a great feeling to have worked on something that could help so many people.”
From the field to the lab
Brush spent his playing career at middle linebacker, a position often considered the quarterback of the defense. In that role, he got accustomed to helping teammates understand their assignments on the field and making sure everyone was in the right position. At MIT, he quickly realized his role would be different.
“In high school, I was constantly reminding teammates what their job was and helping linemen when they lined up in the wrong spot,” Brush says. “At MIT, I didn’t need to do that at all. Everyone knew exactly what their job was. It was really cool playing football with such an intelligent group.”
Throughout his football career, Brush says concussions hung over the sport. He was only formally diagnosed with one concussion, but he notes how difficult it can be to accurately diagnose concussions during games.
“We did baseline tests before the season so we could take tests after a suspected concussion to see if our cognitively ability was degraded,” Brush explains. “But as a player, you want to get back out there and keep helping your team, so players often try to downplay injuries. The doctors do their best.”
Brush worked as an accident reconstruction expert immediately after graduation before joining a product design firm. It was through that position that he first began working with LIGHT Helmets through a consulting project. He started full time with LIGHT last year.
Since then, Brush has managed research and development along with the production of new helmet lines, working closely with LIGHT’s technology partner, KOLLIDE.
“I’m currently the only engineer at LIGHT, so I wear a lot of different hats,” Brush says.
A safer helmet
Brush led the development of LIGHT’s Apache helmet. His approach harkened back to his favorite class at MIT, 2.009 (Product Engineering Process). In the process of building prototypes, students in that class are often tasked with taking apart other products to study how they’re made. For Apache, Brush started by disassembling competing helmets to try to understand how they work, where they’re limited, and where each ounce of weight comes from.
“That helped us make decisions around what we wanted to incorporate into our helmets and what we thought was unnecessary,” Brush says.
LIGHT’s Apache helmets use an impact-modified nylon shell and a 3D-printed thermoplastic polyurethane liner. The liner can compress up to 80 percent of its thickness under full compression compared to traditional foam, which Brush says may compress 20 to 30 percent at most. The liner is made up of 20 different cylindrical pods, each of which has variable stiffness depending on the location in the helmet.
Brush says the shell is more flexible than traditional helmets, which is part of a broader trend among companies focusing on concussion avoidance.
“The idea with the flexible shell is we’re now able to squish both the inside and outside of the helmet, which lets you extend the length of the impact and lower the severity of the hit,” Brush says.
A winning formula
Brush says the company’s performance in Virginia Tech’s tests has garnered a lot of excitement in the industry. The Apache helmet is available for use across high school, college, and professional levels, and the company is currently developing a youth version.
“Last year, we sold about 5,000 helmets, but we’re anticipating tenfold growth this year,” Brush says. “Dealers see the opportunity to sell the number-one-rated helmet at the price of a lot of much lower-rated helmets.”
Other helmets from LIGHT are already being used at the highest levels, with players from 30 of the 32 NFL teams choosing a LIGHT Helmet when they suit up, the company says. That traction has changed Brush’s relationship with football.
For instance, he only used to watch NFL games on Sundays occasionally. But now that his helmets are on TV, he finds himself rooting for the players and teams wearing them.
Regardless of who he roots for, when football becomes safer, everyone wins.
China’s carbon sinks from land-use change underestimated
Nature Climate Change, Published online: 01 April 2025; doi:10.1038/s41558-025-02296-z
The terrestrial carbon flux—sources and sinks—under land-use change (LUC) is difficult to quantify. Here, using a LUC dataset drawing on remote sensing and forest inventory data, the authors show that in China the carbon sink from LUC (such as afforestation) may be underestimated.Professor Emeritus Frederick Greene, influential chemist who focused on free radicals, dies at 97
Frederick “Fred” Davis Greene II, professor emeritus in the MIT Department of Chemistry who was accomplished in the field of physical organic chemistry and free radicals, passed away peacefully after a brief illness, surrounded by his family, on Saturday, March 22. He had been a member of the MIT community for over 70 years.
“Greene’s dedication to teaching, mentorship, and the field of physical organic chemistry is notable,” said Professor Troy Van Voorhis, head of the Department of Chemistry, upon learning of Greene’s passing. “He was also a constant source of joy to those who interacted with him, and his commitment to students and education was legendary. He will be sorely missed.”
Greene, a native of Glen Ridge, New Jersey, was born on July 7, 1927 to parents Phillips Foster Greene and Ruth Altman Greene. He spent his early years in China, where his father was a medical missionary with Yale-In-China. Greene and his family moved to the Philippines just ahead of the Japanese invasion prior to World War Il, and then back to the French Concession of Shanghai, and to the United States in 1940. He joined the U.S. Navy in December 1944, and afterwards earned his bachelor’s degree from Amherst College in 1949 and a PhD from Harvard University in 1952. Following a year at the University of California at Los Angeles as a research associate, he was appointed a professor of chemistry at MIT by then-Department Head Arthur C. Cope in 1953. Greene retired in 1995.
Greene’s research focused on peroxide decompositions and free radical chemistry, and he reported the remarkable bimolecular reaction between certain diacyl peroxides and electron-rich olefins and aromatics. He was also interested in small-ring heterocycles, e.g., the three-membered ring 2,3-diaziridinones. His research also covered strained olefins, the Greene-Viavattene diene, and 9, 9', 10, 10'-tetradehydrodianthracene.
Greene was elected to the American Academy of Arts and Sciences in 1965 and received an honorary doctorate from Amherst College for his research in free radicals. He served as editor-in-chief of the Journal of Organic Chemistry of the American Chemical Society from 1962 to 1988. He was awarded a special fellowship form the National Science Foundation and spent a year at Cambridge University, Cambridge, England, and was a member of the Chemical Society of London.
Greene and Professor James Moore of the University of Philadelphia worked closely with Greene’s wife, Theodora “Theo” W. Greene, in the conversion of her PhD thesis, which was overseen by Professor Elias J. Corey of Harvard University, into her book “Greene’s Protective Groups in Organic Synthesis.” The book became an indispensable reference for any practicing synthetic organic or medicinal chemist and is now in its fifth edition. Theo, who predeceased Fred in July 2005, was a tremendous partner to Greene, both personally and professionally. A careful researcher in her own right, she served as associate editor of the Journal of Organic Chemistry for many years.
Fred Greene was recently featured in a series of videos featuring Professor Emeritus Dietmar Seyferth (who passed away in 2020) that was spearheaded by Professor Rick Danheiser. The videos cover a range of topics, including Seyferth and Greene’s memories during the 1950s to mid-1970s of their fellow faculty members, how they came to be hired, the construction of various lab spaces, developments in teaching and research, the evolution of the department’s graduate program, and much more.
Danheiser notes that it was a privilege to share responsibility for the undergraduate class 5.43 (Advanced Organic Chemistry) with Greene. “Fred Greene was a fantastic teacher and inspired several generations of MIT undergraduate and graduate students with his superb lectures,” Danheiser recalls. The course they shared was Danheiser’s first teaching assignment at MIT, and he states that Greene’s “counsel and mentoring was invaluable to me.”
The Department of Chemistry recognized Greene’s contributions to its academic program by naming the annual student teaching award the “Frederick D. Greene Teaching Award.” This award recognizes outstanding contributions in teaching in chemistry by undergraduates. Since 1993 the award has been given to 46 students.
Dabney White Dixon PhD ’76 was one of many students with whom Greene formed a lifelong friendship and mentorship. Dixon shares, “Fred Greene was an outstanding scientist — intelligent, ethical, and compassionate in every aspect of his life. He possessed an exceptional breadth of knowledge in organic chemistry, particularly in mechanistic organic chemistry, as evidenced by his long tenure as editor of the Journal of Organic Chemistry (1962 to 1988). Weekly, large numbers of manuscripts flowed through his office. He had an acute sense of fairness in evaluating submissions and was helpful to those submitting manuscripts. His ability to navigate conflicting scientific viewpoints was especially evident during the heated debates over non-classical carbonium ions in the 1970s.
“Perhaps Fred’s greatest contribution to science was his mentorship. At a time when women were rare in chemistry PhD programs, Fred’s mentorship was particularly meaningful. I was the first woman in my scientific genealogical lineage since the 1500s, and his guidance gave me the confidence to overcome challenges. He and Theo provided a supportive and joyful environment, helping me forge a career in academia where I have since mentored 13 PhD students — an even mix of men and women — a testament to the social progress in science that Fred helped foster.
“Fred’s meticulous attention to detail was legendary. He insisted that every new molecule be fully characterized spectroscopically before he would examine the data. Through this, his students learned the importance of thoroughness, accuracy, and organization. He was also an exceptional judge of character, entrusting students with as much responsibility as they could handle. His honesty was unwavering — he openly acknowledged mistakes, setting a powerful example for his students.
“Shortly before the pandemic, I had the privilege of meeting Fred with two of his scientific ‘granddaughters’ — Elizabeth Draganova, then a postdoc at Tufts (now an assistant professor at Emory), and Cyrianne Keutcha, then a graduate student at Harvard (now a postdoc at Yale). As we discussed our work, it was striking how much science had evolved — from IR and NMR of small-ring heterocycles to surface plasmon resonance and cryo-electron microscopy of large biochemical systems. Yet, Fred’s intellectual curiosity remained as sharp as ever. His commitment to excellence, attention to detail, and passion for uncovering chemical mechanisms lived on in his scientific descendants.
“He leaves a scientific legacy of chemists who internalized his lessons on integrity, kindness, and rigorous analysis, carrying them forward to their own students and research. His impact on the field of chemistry — and on the lives of those fortunate enough to have known him — will endure.”
Carl Renner PhD ’74 felt fortunate and privileged to be a doctoral student in the Greene group from 1969 to 1973, and also his teaching assistant for his 5.43 course. Renner recalls, “He possessed a curious mind of remarkable clarity and discipline. He prepared his lectures meticulously and loved his students. He was extremely generous with his time and knowledge. I never heard him complain or say anything unkind. Everyone he encountered came away better for it.”
Gary Breton PhD ’91 credits the development of his interest in physical organic chemistry to his time spent in Greene’s class. Breton says, “During my time in the graduate chemistry program at MIT (1987-91) I had the privilege of learning from some of the world’s greatest minds in chemistry, including Dr. Fred Greene. At that time, all incoming graduate students in organic chemistry were assigned in small groups to a seminar-type course that met each week to work on the elucidation of reaction mechanisms, and I was assigned to Dr. Greene’s class. It was here that not only did Dr. Greene afford me a confidence in how to approach reaction mechanisms, but he also ignited my fascination with physical organic chemistry. I was only too happy to join his research group, and begin a love/hate relationship with reactive nitrogen-containing heterocycles that continues to this day in my own research lab as a chemistry professor.
“Anyone that knew Dr. Greene quickly recognized that he was highly intelligent and exceptionally knowledgeable about all things organic, but under his mentorship I also saw his creativity and cleverness. Beyond that, and even more importantly, I witnessed his kindness and generosity, and his subtle sense of humor. Dr. Greene’s enduring legacy is the large number of undergraduate students, graduate students, and postdocs whose lives he touched over his many years. He will be greatly missed.”
John Dolhun PhD ’73 recalls Greene’s love for learning, and that he “was one of the kindest persons that I have known.” Dolhun shares, “I met Fred Greene when I was a graduate student. His organic chemistry course was one of the most popular, and he was a top choice for many students’ thesis committees. When I returned to MIT in 2008 and reconnected with him, he was still endlessly curious — always learning, asking questions. A few years ago, he visited me and we had lunch. Back at the chemistry building, I reached for the elevator button and he said, ‘I always walk up the five flights of stairs.’ So, I walked up with him. Fred knew how to keep both mind and body in shape. He was truly a beacon of light in the department.”
Liz McGrath, retired chemistry staff member, warmly recalls the regular coffees and conversations she shared with Fred over two decades at the Institute. She shares, “Fred, who was already emeritus by the time of my arrival, imparted to me a deep interest in the history of MIT Chemistry’s events and colorful faculty. He had a phenomenal memory, which made his telling of the history so rich in its content. He was a true gentleman and sweet and kind to boot. ... I will remember him with much fondness.”
Greene is survived by his children, Alan, Carol, Elizabeth, and Phillips; nine grandchildren; and six great grandchildren. A memorial service will be held on April 5 at 11 a.m. at the First Congregational Church in Winchester, Massachusetts.
Pattie Maes receives ACM SIGCHI Lifetime Research Award
Pattie Maes, the Germeshausen Professor of Media Arts and Sciences at MIT and head of the Fluid Interfaces research group within the MIT Media Lab, has been awarded the 2025 ACM SIGCHI Lifetime Research Award. She will accept the award at CHI 2025 in Yokohama, Japan this April.
The Lifetime Research Award is given to individuals whose research in human-computer interaction (HCI) is considered both fundamental and influential to the field. Recipients are selected based on their cumulative contributions, influence on the work of others, new research developments, and being an active participant in the Association for Computing Machinery’s Special Interest Group on Computer-Human Interaction (ACM SIGCHI) community.
Her nomination recognizes her advocacy to place human agency at the center of HCI and artificial intelligence research. Rather than AI replacing human capabilities, Maes has advocated for ways in which human capabilities can be supported or enhanced by the integration of AI.
Pioneering the concept of software agents in the 1990s, Maes’ work has always been situated at the intersection of human-computer interaction and artificial intelligence and has helped lay the foundations for today’s online experience. Her article “Social information filtering: algorithms for automating 'word of mouth'” from CHI 95, co-authored with graduate student Upendra Shardanand, is the second-most-cited paper from ACM SIGCHI.
Beyond her contributions in desktop-based interaction, she has an extensive body of work in the area of novel wearable devices that enhance the human experience, for example by supporting memory, learning, decision-making, or health. Through an interdisciplinary approach, Maes has explored accessible and ethical designs while stressing the need for a human-centered approach.
“As a senior faculty member, Pattie is an integral member of the Media Lab, MIT, and larger HCI communities,” says Media Lab Director Dava Newman. “Her contributions to several different fields, alongside her unwavering commitment to enhancing the human experience in her work, is exemplary of not only the Media Lab’s interdisciplinary spirit, but also our core mission: to create transformative technologies and systems that enable people to reimagine and redesign their lives. We all celebrate this well-deserved recognition for Pattie!”
Maes is the second MIT professor to receive this honor, joining her Media Lab colleague Hiroshi Ishii, the Jerome B. Wiesner Professor of Media Arts and Sciences at MIT and head of the Tangible Media research group.
“I am honored to be recognized by the ACM community, especially given that it can be difficult sometimes for researchers doing highly interdisciplinary research to be appreciated, even though some of the most impactful innovations often emerge from that style of research,” Maes comments.
EFF Urges Third Circuit to Join the Legal Chorus: No One Owns the Law
Two appeals courts have recently rejected efforts by private parties to use copyright to restrict access to the laws that most directly affect ordinary citizens: regulations that ensure our homes, workplaces, devices, and many other products, are safe and fit for purpose. Apparently hoping the third time will be the charm, a standards organization is asking the Third Circuit Court of Appeals to break ranks and hold that a private party that helps develop a law also gets to own that law. In an amicus brief filed with co-counsel Abigail Burton and Samuel Silver of Welsh & Recker, P.C., on behalf of multiple entities— including Watch Duty, iFixit, Public.Resource.Org, and multiple library associations—EFF urged the court to instead join the judicial consensus and recognize that no one owns the law.
EFF urged the court to join the judicial consensus and recognize that no one owns the law.
This case concerns UpCodes, a company that has created a database of building codes—like the National Electrical Code—that includes codes incorporated by reference into law. ASTM, a private organization that coordinated the development of some of those codes, insists that it retains copyright in them even after they have been adopted into law, and therefore has the right to control how the public accesses and shares them. Fortunately, neither the Constitution nor the Copyright Act support that theory. Faced with similar claims, some courts, including the Fifth Circuit Court of Appeals, have held that the codes lose copyright protection when they are incorporated into law. Others, like the D.C. Circuit Court of Appeals in a case EFF defended on behalf of Public.Resource.Org, have held that, whether or not the legal status of the standards changes once they are incorporated into law, making them fully accessible and usable online is a lawful fair use. A federal court in Pennsylvania followed the latter path in this case, finding that UpCodes’ database was a protected fair use.
The Third Circuit should affirm the ruling, preferably on the alternative ground that standards incorporated into law are necessarily promoted to the public domain. The internet has democratized access to law, making it easier than ever for the public —from journalists to organizers to safety professionals to ordinary concerned citizens —to understand, comment on, and share the myriad regulations that bind us. That work is particularly essential where those regulations are crafted by private parties and made mandatory by regulators with limited public oversight and increasingly limited staffing. Copyright law should not be read to impede it.
The Supreme Court has explained that “every citizen is presumed to know the law, and it needs no argument to show that all should have free access” to it. Apparently, it needs some argument after all, but it is past time for the debate to end.
Related Cases: Freeing the Law with Public.Resource.Org