Feed aggregator

Anticipating climate impacts on nutrition through climate–crop nutrient modelling

Nature Climate Change - Fri, 10/31/2025 - 12:00am

Nature Climate Change, Published online: 31 October 2025; doi:10.1038/s41558-025-02470-3

Climate change influences not only crop yields but also crop nutritional content, which is currently not simulated by process-based crop models. This Perspective proposes a way forward to integrate nutrients into crop models to assess climate impacts and highlights data needs.

Using classic physical phenomena to solve new problems

MIT Latest News - Fri, 10/31/2025 - 12:00am

Quenching, a powerful heat transfer mechanism, is remarkably effective at transporting heat away. But in extreme environments, like nuclear power plants and aboard spaceships, a lot rides on the efficiency and speed of the process.

It’s why Marco Graffiedi, a fifth-year doctoral student at MIT’s Department of Nuclear Science and Engineering (NSE), is researching the phenomenon to help develop the next generation of spaceships and nuclear plants.

Growing up in small-town Italy

Graffiedi’s parents encouraged a sense of exploration, giving him responsibilities for family projects even at a young age. When they restored a countryside cabin in a small town near Palazzolo, in the hills between Florence and Bologna, the then-14-year-old Marco got a project of his own. He had to ensure the animals on the property had enough accessible water without overfilling the storage tank. Marco designed and built a passive hydraulic system that effectively solved the problem and is still functional today.

His proclivity for science continued in high school in Lugo, where Graffiedi enjoyed recreating classical physics phenomena, through experiments. Incidentally, the high school is named after Gregorio Ricci-Curbastro, a mathematician who laid the foundation for the theory of relativity — history that is not lost on Graffiedi. After high school, Graffiedi attended the International Physics Olympiad in Bangkok, a formative event that cemented his love for physics.

A gradual shift toward engineering

A passion for physics and basic sciences notwithstanding, Graffiedi wondered if he’d be a better fit for engineering, where he could use the study of physics, chemistry, and math as tools to build something.

Following that path, he completed a bachelor’s and master’s in mechanical engineering — because an undergraduate degree in Italy takes only three years, pretty much everyone does a master’s, Graffiedi laughs — at the Università di Pisa and the Scuola Superiore Sant’Anna (School of Engineering). The Sant’Anna is a highly selective institution that most students attend to complement their university studies.

Graffiedi’s university studies gradually moved him toward the field of environmental engineering. He researched concentrated solar power in order to reduce the cost of solar power by studying the associated thermal cycle and trying to improve solar power collection. While the project was not very successful, it reinforced Graffiedi’s impression of the necessity of alternative energies. Still firmly planted in energy studies, Graffiedi worked on fracture mechanics for his master’s thesis, in collaboration with (what was then) GE Oil and Gas, researching how to improve the effectiveness of centrifugal compressors. And a summer internship at Fermilab had Graffiedi working on the thermal characterization of superconductive coatings.

With his studies behind him, Graffiedi was still unsure about this professional path. Through the Edison Program from GE Oil and Gas, where he worked shortly after graduation, Graffiedi got to test drive many fields — from mechanical and thermal engineering to exploring gas turbines and combustion. He eventually became a test engineer, coordinating a team of engineers to test a new upgrade to the company’s gas turbines. “I set up the test bench, understanding how to instrument the machine, collect data, and run the test,” Graffiedi remembers, “there was a lot you need to think about, from a little turbine blade with sensors on it to the location of safety exits on the test bench.”

The move toward nuclear engineering

As fun as the test engineering job was, Graffiedi started to crave more technical knowledge and wanted to pivot to science. As part of his exploration, he came across nuclear energy and, understanding it to be the future, decided to lean on his engineering background to apply to MIT NSE.

He found a fit in Professor Matteo Bucci’s group and decided to explore boiling and quenching. The move from science to engineering, and back to science, was now complete.

NASA, the primary sponsor of the research, is interested in preventing boiling of cryogenic fuels, because boiling leads to loss of fuel and the resulting vapor will need to be vented to avoid overpressurizing a fuel tank.

Graffiedi’s primary focus is on quenching, which will play an important role in refueling in space — and in the cooling of nuclear cores. When a cryogen is used to cool down a surface, it undergoes what is known as the Leidenfrost effect, which means it first forms a thin vapor film that acts as an insulator and prevents further cooling. To facilitate rapid cooling, it’s important to accelerate the collapse of the vapor film. Graffiedi is exploring the mechanics of the quenching process on a microscopic level, studies that are important for land and space applications.

Boiling can be used for yet another modern application: to improve the efficiency of cooling systems for data centers. The growth of data centers and electric transportation systems needs effective heat transfer mechanisms to avoid overheating. Immersion cooling using dielectric fluids — fluids that do not conduct electricity — is one way to do so. These fluids remove heat from a surface by leaning on the principle of boiling. For effective boiling, the fluid must overcome the Leidenfrost effect and break the vapor film that forms. The fluid must also have high critical heat flux (CHF), which is the maximum value of the heat flux at which boiling can effectively be used to transfer heat from a heated surface to a liquid. Because dielectric fluids have lower CHF than water, Graffiedi is exploring solutions to enhance these limits. In particular, he is investigating how high electric fields can be used to enhance CHF and even to use boiling as a way to cool electronic components in the absence of gravity. He published this research in Applied Thermal Engineering in June.

Beyond boiling

Graffiedi’s love of science and engineering shows in his commitment to teaching as well. He has been a teaching assistant for four classes at NSE, winning awards for his contributions. His many additional achievements include winning the Manson Benedict Award presented to an NSE graduate student for excellence in academic performance and professional promise in nuclear science and engineering, and a service award for his role as past president of the MIT Division of the American Nuclear Society.

Boston has a fervent Italian community, Graffiedi says, and he enjoys being a part of it. Fittingly, the MIT Italian club is called MITaly. When he’s not at work or otherwise engaged, Graffiedi loves Latin dancing, something he makes time for at least a couple of times a week. While he has his favorite Italian restaurants in the city, Graffiedi is grateful for another set of skills his parents gave him when was just 11: making perfect pizza and pasta.

Age Verification, Estimation, Assurance, Oh My! A Guide to the Terminology

EFF: Updates - Thu, 10/30/2025 - 6:37pm

If you've been following the wave of age-gating laws sweeping across the country and the globe, you've probably noticed that lawmakers, tech companies, and advocates all seem to be using different terms for what sounds like the same thing. Age verification, age assurance, age estimation, age gating—they get thrown around interchangeably, but they technically mean different things. And those differences matter a lot when we're talking about your rights, your privacy, your data, and who gets to access information online.

So let's clear up the confusion. Here's your guide to the terminology that's shaping these laws, and why you should care about the distinctions.

Age Gating: “No Kids Allowed”

Age gating refers to age-based restrictions on access to online services. Age gating can be required by law or voluntarily imposed as a corporate decision. Age gating does not necessarily refer to any specific technology or manner of enforcement for estimating or verifying a user’s age. It simply refers to the fact that a restriction exists. Think of it as the concept of “you must be this old to enter” without getting into the details of how they’re checking. 

Age Assurance: The Umbrella Term

Think of age assurance as the catch-all category. It covers any method an online service uses to figure out how old you are with some level of confidence. That's intentionally vague, because age assurance includes everything from the most basic check-the-box systems to full-blown government ID scanning.

Age assurance is the big tent that contains all the other terms we're about to discuss below. When a company or lawmaker talks about "age assurance," they're not being specific about how they're determining your age—just that they're trying to. For decades, the internet operated on a “self-attestation” system where you checked a box saying you were 18, and that was it. These new age-verification laws are specifically designed to replace that system. When lawmakers say they want "robust age assurance," what they really mean is "we don't trust self-attestation anymore, so now you need to prove your age beyond just swearing to it."

Age Estimation: Letting the Algorithm Decide

Age estimation is where things start getting creepy. Instead of asking you directly, the system guesses your age based on data it collects about you.

This might include:

  • Analyzing your face through a video selfie or photo
  • Examining your voice
  • Looking at your online behavior—what you watch, what you like, what you post
  • Checking your existing profile data

Companies like Instagram have partnered with services like Yoti to offer facial age estimation. You submit a video selfie, an algorithm analyzes your face, and spits out an estimated age range. Sounds convenient, right?

Here's the problem, “estimation” is exactly that: it’s a guess. And it is inherently imprecise. Age estimation is notoriously unreliable, especially for teenagers—the exact group these laws claim to protect. An algorithm might tell a website you're somewhere between 15 and 19 years old. That's not helpful when the cutoff is 18, and what's at stake is a young person's constitutional rights.

And it gets worse. These systems consistently fail for certain groups:

When estimation fails (and it often does), users get kicked to the next level: actual verification. Which brings us to…

Age Verification: “Show Me Your Papers”

Age verification is the most invasive option. This is where you have to prove your age to a certain date, rather than, for example, prove that you have crossed some age threshold (like 18 or 21 or 65). EFF generally refers to most age gates and mandates on young people’s access to online information as “age verification,” as most of them typically require you to submit hard identifiers like:

  • Government-issued ID (driver's license, passport, state ID)
  • Credit card information
  • Utility bills or other documents
  • Biometric data

This is what a lot of new state laws are actually requiring, even when they use softer language like "age assurance." Age verification doesn't just confirm you're over 18, it reveals your full identity. Your name, address, date of birth, photo—everything.

Here's the critical thing to understand: age verification is really identity verification. You're not just proving you're old enough—you're proving exactly who you are. And that data has to be stored, transmitted, and protected by every website that collects it.

We already know how that story ends. Data breaches are inevitable. And when a database containing your government ID tied to your adult content browsing history gets hacked—and it will—the consequences can be devastating.

Why This Confusion Matters

Politicians and tech companies love using these terms interchangeably because it obscures what they're actually proposing. A law that requires "age assurance" sounds reasonable and moderate. But if that law defines age assurance as requiring government ID verification, it's not moderate at all—it's mass surveillance. Similarly, when Instagram says it's using "age estimation" to protect teens, that sounds privacy-friendly. But when their estimation fails and forces you to upload your driver's license instead, the privacy promise evaporates.

Language matters because it shapes how we think about these systems. "Assurance" sounds gentle. "Verification" sounds official. "Estimation" sounds technical and impersonal, and also admits its inherent imprecision. 

Here's the uncomfortable truth: most lawmakers writing these bills have no idea how any of this technology actually works. They don't know that age estimation systems routinely fail for people of color, trans individuals, and people with disabilities. They don't know that verification systems have error rates. They don't even seem to understand that the terms they're using mean different things. The fact that their terminology is all over the place—using "age assurance," "age verification," and "age estimation" interchangeably—makes this ignorance painfully clear, and leaves the onus on platforms to choose whichever option best insulates them from liability.

Language matters because it shapes how we think about these systems. "Assurance" sounds gentle. "Verification" sounds official. "Estimation" sounds technical and impersonal, and also admits its inherent imprecision. But they all involve collecting your data and create a metaphysical age gate to the internet. The terminology is deliberately confusing, but the stakes are clear: it's your privacy, your data, and your ability to access the internet without constant identity checks. Don't let fuzzy language disguise what these systems really do.

Q&A: How MITHIC is fostering a culture of collaboration at MIT

MIT Latest News - Thu, 10/30/2025 - 3:45pm

The MIT Human Insight Collaborative (MITHIC) is a presidential initiative with a mission of elevating human-centered research and teaching and connecting scholars in the humanities, arts, and social sciences with colleagues across the Institute.

Since its launch in 2024, MITHIC has funded 31 projects led by teaching and research staff representing 22 different units across MIT. The collaborative is holding its annual event on Nov. 17. 

In this Q&A, Keeril Makan, associate dean in the MIT School of Humanities, Arts, and Social Sciences, and Maria Yang, interim dean of the MIT School of Engineering, discuss the value of MITHIC and the ways it’s accelerating new research and collaborations across the Institute. Makan is the Michael (1949) Sonja Koerner Music Composition Professor and faculty lead for MITHIC. Yang is the William E. Leonhard (1940) Professor in the Department of Mechanical Engineering and co-chair of MITHIC’s SHASS+ Connectivity Fund.

Q: You each come from different areas of MIT. Looking at MITHIC from your respective roles, why is this initiative so important for the Institute?

Makan: The world is counting on MIT to develop solutions to some of the world’s greatest challenges, such as artificial intelligence, poverty, and health care. These are all issues that arise from human activity, a thread that runs through much of the research we’re focused on in SHASS. Through MITHIC, we’re embedding human-centered thinking and connecting the Institute’s top scholars in the work needed to find innovative ways of addressing these problems.

Yang: MITHIC is very important to MIT, and I think of this from the point of view as an engineer, which is my background. Engineers often think about the technology first, which is absolutely important. But for that technology to have real impact, you have to think about the human insights that make that technology relevant and can be deployed in the world. So really having a deep understanding of that is core to MITHIC and MIT’s engineering enterprise.

Q: How does MITHIC fit into MIT’s broader mission? 

Makan: MITHIC highlights how the work we do in the School of Humanities, Arts, and Social Sciences is aligned with MIT’s mission, which is to address the world’s great problems. But MITHIC has also connected all of MIT in this endeavor. We have faculty from all five schools and the MIT Schwarzman College of Computing involved in evaluating MITHIC project proposals. Each of them represent a different point of view and are engaging with these projects that originate in SHASS, but actually cut across many different fields. Seeing their perspectives on these projects has been inspiring.

Yang: I think of MIT’s main mission as using technology and many other things to make impact in the world, especially social impact. The kind of interdisciplinary work that MITHIC catalyzes really enables all of that work to happen in a new and profound way. The SHASS+ Connectivity Fund, which connects SHASS faculty and researchers with colleagues outside of SHASS, has resulted in collaborations that were not possible before. One example is a project being led by professors Mark Rau, who has a shared appointment between Music and Electrical Engineering and Computer Science, and Antoine Allanore in Materials Science and Engineering. The two of them are looking at how they can take ancient unplayable instruments and recreate them using new technologies for scanning and fabrication. They’re also working with the Museum of Fine Arts, so it’s a whole new type of collaboration that exemplifies MITHIC. 

Q: What has been the community response to MITHIC in its first year?

Makan: It’s been very strong. We found a lot of pent-up demand, both from faculty in SHASS and faculty in the sciences and engineering. Either there were preexisting collaborations that they could take to the next level through MITHIC, or there was the opportunity to meet someone new and talk to someone about a problem and how they could collaborate. MITHIC also hosted a series of Meeting of the Minds events, which are a chance to have faculty and members of the community get to know one another on a certain topic. This community building has been exciting, and led to an overwhelming number of applications last year. There has also been significant student involvement, with several projects bringing on UROPs [Undergraduate Research Opportunities Program projects] and PhD students to help with their research. MITHIC gives a real morale boost and a lot of hope that there is a focus upon building collaborations at MIT and on not forgetting that the world needs humanists, artists, and social scientists.

Yang: One faculty member told me the SHASS+ Connectivity Fund has given them hope for the kind of research that we do because of the cross collaboration. There’s a lot of excitement and enthusiasm for this type of work.

Q: The SHASS+ Connectivity Fund is designed to support interdisciplinary collaborations at MIT. What’s an example of a SHASS+ project that’s worked particularly well? 

Makan: One exciting collaboration is between professors Jörn Dunkel in Mathematics and In Song Kim in Political science. In Song is someone who has done a lot of work on studying lobbying and its effect upon the legislative process. He met Jörn, I believe, at one of MIT’s daycare centers, so it’s a relationship that started in a very informal fashion. But they found they actually had ways of looking at math and quantitative analysis that could complement one another. Their work is creating a new subfield and taking the research in a direction that would not be possible without this funding.

Yang: One of the SHASS+ projects that I think is really interesting is between professors Marzyeh Ghassemi in Electrical Engineering and Computer Science and Esther Duflo in Economics. The two of them are looking at how they can use AI to help health diagnostics in low-resource global settings, where there isn’t a lot of equipment or technology to do basic health diagnostics. They can use handheld, low-cost equipment to do things like predict if someone is going to have a heart attack. And they are not only developing the diagnostic tool, but evaluating the fairness of the algorithm. The project is an excellent example of using a MITHIC grant to make impact in the world.

Q: What has been MITHIC’s impact in terms of elevating research and teaching within SHASS?

Makan: In addition to the SHASS+ Connectivity Fund, there are two other possibilities to help support both SHASS research as well as educational initiatives: the Humanities Cultivation Fund and the SHASS Education Innovation Fund. And both of these are providing funding in excess of what we normally see within SHASS. It both recognizes the importance of the work of our faculty and it also gives them the means to actually take ideas to a much further place. 

One of the projects that MITHIC is helping to support is the Compass Initiative. Compass was started by Lily Tsai, one of our professors in Political Science, along with other faculty in SHASS to create essentially an introductory class to the different methodologies within SHASS. So we have philosophers, music historians, etc., all teaching together, all addressing how we interact with one another, what it means to be a good citizen, what it means to be socially aware and civically engaged. This is a class that is very timely for MIT and for the world. And we were able to give it robust funding so they can take this and develop it even further. 

MITHIC has also been able to take local initiatives in SHASS and elevate them. There has been a group of anthropologists, historians, and urban planners that have been working together on a project called the Living Climate Futures Lab. This is a group interested in working with frontline communities around climate change and sustainability. They work to build trust with local communities and start to work with them on thinking about how climate change affects them and what solutions might look like. This is a powerful and uniquely SHASS approach to climate change, and through MITHIC, we’re able to take this seed effort, robustly fund it, and help connect it to the larger climate project at MIT. 

Q: What excites you most about the future of MITHIC at MIT?

Yang: We have a lot of MIT efforts that are trying to break people out of their disciplinary silos, and MITHIC really is a big push on that front. It’s a presidential initiative, so it’s high on the priority list of what people are thinking about. We’ve already done our first round, and the second round is going to be even more exciting, so it’s only going to gain in force. In SHASS+, we’re actually having two calls for proposals this academic year instead of just one. I feel like there’s still so much possibility to bring together interdisciplinary research across the Institute.

Makan: I’m excited about how MITHIC is changing the culture of MIT. MIT thinks of itself in terms of engineering, science, and technology, and this is an opportunity to think about those STEM fields within the context of human activity and humanistic thinking. Having this shift at MIT in how we approach solving problems bodes well for the world, and it places SHASS as this connective tissue at the Institute. It connects the schools and it can also connect the other initiatives, such as manufacturing and health and life sciences. There’s an opportunity for MITHIC to seed all these other initiatives with the work that goes on in SHASS.

The AI-Designed Bioweapon Arms Race

Schneier on Security - Thu, 10/30/2025 - 7:05am

Interesting article about the arms race between AI systems that invent/design new biological pathogens, and AI systems that detect them before they’re created:

The team started with a basic test: use AI tools to design variants of the toxin ricin, then test them against the software that is used to screen DNA orders. The results of the test suggested there was a risk of dangerous protein variants slipping past existing screening software, so the situation was treated like the equivalent of a zero-day vulnerability.

[…]

Details of that original test are ...

Jamaica spent years girding for a disaster. Melissa is the ultimate test.

ClimateWire News - Thu, 10/30/2025 - 6:16am
Insurance, bonds and savings will speed recovery from the monster hurricane, but the Caribbean nation will still need international aid.

Western high-speed rail line asks Trump for $6B as costs balloon

ClimateWire News - Thu, 10/30/2025 - 6:15am
The project aims to connect Las Vegas and Southern California. Trains along the route are expected to hit speeds up to 200 mph.

9 months of Trump leaves renewable developers bruised — but not beaten

ClimateWire News - Thu, 10/30/2025 - 6:14am
NextEra Energy and Iberdrola see opportunities for renewable projects in the changing market, while Equinor said it has completed turbine installation at Empire Wind.

Federal health researchers scrutinize offshore wind

ClimateWire News - Thu, 10/30/2025 - 6:12am
The Depatment of Health and Human Services' probe comes as the Trump administration works to stymie renewable energy projects.

Extreme heat kills one person per minute worldwide, Lancet report finds

ClimateWire News - Thu, 10/30/2025 - 6:12am
Researchers found that 13 out of 20 climate change impacts had accelerated over the years.

California climate regulators propose tightening carbon emissions cap

ClimateWire News - Thu, 10/30/2025 - 6:11am
The draft proposal marks the opening salvo in a new round of fighting over California’s climate targets.

Singapore faces pressure to reveal carbon tax concessions to oil giants

ClimateWire News - Thu, 10/30/2025 - 6:09am
Local climate groups issued a joint letter in September demanding more information about the scale and scope of the tax breaks.

Deadly floods batter central Vietnam, killing at least 10

ClimateWire News - Thu, 10/30/2025 - 6:09am
In Huế, rainfall reached a record 42 inches in 24 hours by late Monday, according to the national weather agency.

MacKenzie Scott gives $60M to disaster-recovery nonprofit

ClimateWire News - Thu, 10/30/2025 - 6:08am
The gift to the Center for Disaster Philanthropy comes as the U.S. pulls back federal support for communities after emergencies.

Climate change alters training ahead of Winter Olympics

ClimateWire News - Thu, 10/30/2025 - 6:07am
"We're chasing the snow," said Canadian freestyle skier Marion Thénault.

Battery-powered appliances make it easy to switch from gas to electric

MIT Latest News - Thu, 10/30/2025 - 12:00am

As batteries have gotten cheaper and more powerful, they have enabled the electrification of everything from vehicles to lawn equipment, power tools, and scooters. But electrifying homes has been a slower process. That’s because switching from gas appliances often requires ripping out drywall, running new wires, and upgrading the electrical box.

Now the startup Copper, founded by Sam Calisch SM ’14, PhD ’19, has developed a battery-equipped kitchen range that can plug into a standard 120-volt wall outlet. The induction range features a lithium iron phosphate battery that charges when energy is cheapest and cleanest, then delivers power when you’re ready to cook.

“We’re making ‘going electric’ like an appliance swap instead of a construction project,” says Calisch. “If you have a gas stove today, there is almost certainly an outlet within reach because the stove has an oven light, clock, or electric igniters. That’s big if you’re in a single-family home, but in apartments it’s an existential factor. Rewiring a 100-unit apartment building is such an expensive proposition that basically no one’s doing it.”

Copper has shipped about 1,000 of its battery-powered ranges to date, often to developers and owners of large apartment complexes. The company also has an agreement with the New York City Housing Authority for at least 10,000 units.

Once installed, the ranges can contribute to a distributed, cleaner, and more resilient energy network. In fact, Copper recently piloted a program in California to offer cheap, clean power to the grid from its home batteries when it would otherwise need to fire up a gas-powered plant to meet spiking electricity demand.

“After these appliances are installed, they become a grid asset,” Calisch says. “We can manage the fleet of batteries to help provide firm power and help grids deliver more clean electricity. We use that revenue, in turn, to further drive down the cost of electrification.”

Finding a mission

Calisch has been working on climate technologies his entire career. It all started at the clean technology incubator Otherlab that was founded by Saul Griffith SM ’01, PhD ’04.

“That’s where I caught the bug for technology and product development for climate impact,” Calisch says. “But I realized I needed to up my game, so I went to grad school in [MIT Professor] Neil Gershenfeld’s lab, the Center for Bits and Atoms. I got to dabble in software engineering, mechanical engineering, electrical engineering, mathematical modeling, all with the lens of building and iterating quickly.”

Calisch stayed at MIT for his PhD, where he worked on approaches in manufacturing that used fewer materials and less energy. After finishing his PhD in 2019, Calisch helped start a nonprofit called Rewiring America focused on advocating for electrification. Through that work, he collaborated with U.S. Senate offices on the Inflation Reduction Act.

The cost of lithium ion batteries has decreased by about 97 percent since their commercial debut in 1991. As more products have gone electric, the manufacturing process for everything from phones to drones, robots, and electric vehicles has converged around an electric tech stack of batteries, electric motors, power electronics, and chips. The countries that master the electric tech stack will be at a distinct manufacturing advantage.

Calisch started Copper to boost the supply chain for batteries while contributing to the electrification movement.

“Appliances can help deploy batteries, and batteries help deploy appliances,” Calisch says. “Appliances can also drive down the installed cost of batteries.”

The company is starting with the kitchen range because its peak power draw is among the highest in the home. Flattening that peak brings big benefits. Ranges are also meaningful: It’s where people gather around and cook each night. People take pride in their kitchen ranges more than, say, a water heater.

Copper’s 30-inch induction range heats up more quickly and reaches more precise temperatures than its gas counterpart. Installing it is as easy as swapping a fridge or dishwasher. Thanks to its 5-kilowatt-hour battery, the range even works when the power goes out.

“Batteries have become 10 times cheaper and are now both affordable and create tangible improvements in quality of life,” Calisch says. “It’s a new notion of climate impact that isn’t about turning down thermostats and suffering for the planet, it’s about adopting new technologies that are better.”

Scaling impact

Calisch says there’s no way for the U.S. to maintain resilient energy systems in the future without a lot of batteries. Because of power transmission and regulatory limitations, those batteries can’t all be located out on the grid.

“We see an analog to the internet,” Calisch says. “In order to deliver millions of times more information across the internet, we didn’t add millions of times more wires. We added local storage and caching across the network. That’s what increased throughput. We’re doing the same thing for the electric grid.”

This summer, Copper raised $28 million to scale its production to meet growing demand for its battery equipped appliances. Copper is also working to license its technology to other appliance manufacturers to help speed the electric transition.

“These electric technologies have the potential to improve people’s lives and, as a byproduct, take us off of fossil fuels,” Calisch says. “We’re in the business of identifying points of friction for that transition. We are not an appliance company; we’re an energy company.”

Looking back, Calisch credits MIT with equipping him with the knowledge needed to run a technical business.

“My time at MIT gave me hands-on experience with a variety of engineering systems,” Calisch. “I can talk to our embedded engineering team or electrical engineering team or mechanical engineering team and understand what they’re saying. That’s been enormously useful for running a company.”

He adds: “I also developed an expansive view of infrastructure at MIT, which has been instrumental in launching Copper and thinking about the electrical grid not just as wires on the street, but all of the loads in our buildings. It’s about making homes not just consumers of electricity, but participants in this broader network.”

Study reveals the role of geography in the opioid crisis

MIT Latest News - Thu, 10/30/2025 - 12:00am

The U.S. opioid crisis has varied in severity across the country, leading to extended debate about how and why it has spread.

Now, a study co-authored by MIT economists sheds new light on these dynamics, examining the role that geography has played in the crisis. The results show how state-level policies inadvertently contributed to the rise of opioid addiction, and how addiction itself is a central driver of the long-term problem.

The research analyzes data about people who moved within the U.S., as a way of addressing a leading question about the crisis: How much of the problem is attributable to local factors, and to what extent do people have individual characteristics making them prone to opioid problems?

“We find a very large role for place-based factors, but that doesn’t mean there aren’t person-based factors as well,” says MIT economist Amy Finkelstein, co-author of a new paper detailing the study’s findings. “As is usual, it’s rare to find an extreme answer, either one or the other.”

In scrutinizing the role of geography, the scholars developed new insights about the spread of the crisis in relation to the dynamics of addiction. The study concludes that laws restricting pain clinics, or “pill mills,” where opioids were often prescribed, reduced risky opioid use by 5 percent over the 2006-2019 study period. Due to the path of addiction, enacting those laws near the onset of the crisis, in the 1990s, could have reduced risky use by 30 percent over that same time.

“What we do find is that pill mill laws really matter,” says MIT PhD student Dean Li, a co-author of the paper. “The striking thing is that they mattered a lot, and a lot of the effect was through transitions into opioid addiction.”

The paper, “What Drives Risky Prescription Opioid Use: Evidence from Migration,” appears in the Quarterly Journal of Economics. The authors are Finkelstein, who is the John and Jennie S. MacDonald Professor of Economics; Matthew Gentzkow, a professor of economics at Stanford University; and Li, a PhD student in MIT’s Department of Economics.

The opioid crisis, as the scholars note in the paper, is one of the biggest U.S. health problems in recent memory. As of 2017, there were more than twice as many U.S. deaths from opioids as from homicide. There were also at least 10 times as many opioid deaths compared to the number of deaths from cocaine during the 1980s-era crack epidemic in the U.S.

Many accounts and analyses of the crisis have converged on the increase in medically prescribed opioids starting in the 1990s as a crucial part of the problem; this was in turn a function of aggressive marketing by pharmaceutical companies, among other things. But explanations of the crisis beyond that have tended to fracture. Some analyses emphasize the personal characteristics of those who fall into opioid use, such as a past history of substance use, mental health conditions, age, and more. Other analyses focus on place-based factors, including the propensity of area medical providers to prescribe opioids.

To conduct the study, the scholars examined data on prescription opioid use from adults in the Social Security Disability Insurance program from 2006 to 2019, covering about 3 million cases in all. They defined “risky” use as an average daily morphine-equivalent dose of more than 120 milligrams, which has been shown to increase drug dependence.

By studying people who move, the scholars were developing a kind of natural experiment — Finkelstein has also used this same method to examine questions about disparities in health care costs and longevity across the U.S. In this case, in focusing on the opioid consumption patterns of the same people as they lived in different places, the scholars can disentangle the extent to which place-based and personal factors drive usage.

Overall, the study found a somewhat greater role for place-based factors than for personal characteristics in accounting for the drivers of risky opioid use. To see the magnitude of place-based effects, consider someone moving to a state with a 3.5 percentage point higher rate of risky use — akin to moving from the state with the 10th lowest rate of risky use to the state with the 10th highest rate. On average, that person’s probability of risky opioid use would increase by a full percentage point in the first year, then by 0.3 percentage points in each subsequent year.

Some of the study’s key findings involve the precise mechanisms at work beneath these top-line numbers.

In the research, the scholars examine what they call the “addiction channel,” in which opioid users fall into addiction, and the “availability channel,” in which the already-addicted find ways to sustain their use. Over the 2006-2019 period, they find, people falling into addiction through new prescriptions had an impact on overall opioid uptake that was 2.5 times as large as that of existing users getting continued access to prescribed opiods.

When people who are not already risky users of opioids move to places with higher rates of risky opioid use, Finkelstein observes, “One thing you can see very clearly in the data is that in the addiction channel, there’s no immediate change in behavior, but gradually as they’re in this new place you see an increase in risky opioid use.”

She adds: “This is consistent with a model where people move to a new place, have a back problem or car accident and go to a hospital, and if the doctor is more likely to prescribe opioids, there’s more of a risk they’re going to become addicted.”

By contrast, Finkelstein says, “If we look at people who are already risky users of opioids and they move to a new place with higher rates of risky opioid use, you see there’s an immediate increase in their opioid use, which suggests it’s just more available. And then you also see the gradual increase indicating more addiction.”

By looking at state-level policies, the researchers found this trend to be particularly pronounced in over a dozen states that lagged in enacting restrictions on pain clinics, or “pill mills,” where providers had more latitude to prescribe opioids.

In this way the research does not just evaluate the impact of place versus personal characteristics; it quantifies the problem of addiction as an additional dimension of the issue. While many analyses have sought to explain why people first use opioids, the current study reinforces the importance of preventing the onset of addiction, especially because addicted users may later seek out nonprescription opioids, exacerbating the problem even further.

“The persistence of addiction is a huge problem,” Li says. “Even after the role of prescription opioids has subsided, the opioid crisis persists. And we think this is related to the persistence of addiction. Once you have this set in, it’s so much harder to change, compared to stopping the onset of addiction in the first place.”

Research support was provided by the National Institute on Aging, the Social Security Administration, and the Stanford Institute for Economic Policy Research.

Injectable antenna could safely power deep-tissue medical implants

MIT Latest News - Wed, 10/29/2025 - 5:00pm

Researchers from the MIT Media Lab have developed an antenna — about the size of a fine grain of sand — that can be injected into the body to wirelessly power deep-tissue medical implants, such as pacemakers in cardiac patients and neuromodulators in people suffering from epilepsy or Parkinson’s disease.

“This is the next major step in miniaturizing deep-tissue implants,” says Baju Joy, a PhD student in the Media Lab’s Nano-Cybernetic Biotrek research group. “It enables battery-free implants that can be placed with a needle, instead of major surgery.”

paper detailing this work was published in the October issue of IEEE Transactions on Antennas and Propagation. Joy is joined on the paper by lead author Yubin Cai, PhD student at the Media Lab; Benoît X. E. Desbiolles and Viktor Schell, former MIT postdocs; Shubham Yadav, an MIT PhD student in media arts and sciences; David C. Bono, an instructor in the MIT Department of Materials Science and Engineering; and senior author Deblina Sarkar, the AT&T Career Development Associate Professor at the Media Lab and head of the Nano-Cybernetic Biotrek group.

Deep-tissue implants are currently powered either with a several-centimeters-long battery that is surgically implanted in the body, requiring periodic replacement, or with a surgically placed magnetic coil, also of a centimeter-scale size, that can harvest power wirelessly. The coil method functions only at high frequencies, which can cause tissue heating, limiting how much power can be safely delivered to the implant when miniaturized to sub-millimeter sizes.

“After that limit, you start damaging the cells,” says Joy.

As is stated in the team’s IEEE Transactions on Antennas and Propagation paper, “developing an antenna at ultra-small dimensions (less then 500 micrometers) which can operate efficiently in the low-frequency band is challenging.”

The 200-micrometer antenna — developed through research led by Sarkar — operates at low frequencies (109 kHz) thanks to a novel technology in which a magnetostrictive film, which deforms when a magnetic field is applied, is laminated with a piezoelectric film, which converts deformation to electric charge. When an alternating magnetic field is applied, magnetic domains within the magnetostrictive film contort it in the same way that a piece of fabric interwoven with pieces of metal would contort if subjected to a strong magnet. The mechanical strain in the magnetostrictive layer causes the piezoelectric layer to generate electric charges across electrodes placed above and below.

“We are leveraging this mechanical vibration to convert the magnetic field to an electric field,” Joy says.

Sarkar says the newly developed antenna delivers four to five orders of magnitude more power than implantable antennas of similar size that rely on metallic coils and operate in the GHz frequency range.

“Our technology has the potential to introduce a new avenue for minimally invasive bioelectric devices that can operate wirelessly deep within the human body,” she says.

The magnetic field that activates the antenna is provided by a device similar to a rechargeable wireless cell phone charger, and is small enough to be applied to the skin as a stick-on patch or slipped into a pocket close to the skin surface.

Because the antenna is fabricated with the same technology as a microchip, it can be easily integrated with already-existing microelectronics.

“These electronics and electrodes can be easily made to be much smaller than the antenna itself, and they would be integrated with the antenna during nanofabrication,” Joy says, adding that the researchers’ work leverages 50 years of research and development applied to making transistors and other electronics smaller and smaller. “The other components can be tiny, and the entire system can be placed with a needle injection.”

Manufacture of the antennas could be easily scaled up, the researchers say, and multiple antennas and implants could be injected to treat large areas of the body.

Another possible application of this antenna, in addition to pacemaking and neuromodulation, is glucose sensing in the body. Circuits with an optical sensor for detecting glucose already exist, but the process would benefit greatly with a wireless power supply that can be non-invasively integrated inside of the body.

“That’s just one example,” Joy says. “We can leverage all these other techniques that are also developed using the same fabrication methods, and then just integrate them easily to the antenna.”

Burning things to make things

MIT Latest News - Wed, 10/29/2025 - 4:35pm

Around 80 percent of global energy production today comes from the combustion of fossil fuels. Combustion, or the process of converting stored chemical energy into thermal energy through burning, is vital for a variety of common activities including electricity generation, transportation, and domestic uses like heating and cooking — but it also yields a host of environmental consequences, contributing to air pollution and greenhouse gas emissions.

Sili Deng, the Doherty Chair in Ocean Utilization and associate professor of mechanical engineering at MIT, is leading research to drive the transition from the heavy dependence on fossil fuels to renewable energy with storage.

“I was first introduced to flame synthesis in my junior year in college,” Deng says. “I realized you can actually burn things to make things, [and] that was really fascinating.”

Deng says she ultimately picked combustion as a focus of her work because she likes the intellectual challenge the concept offers. “In combustion you have chemistry, and you have fluid mechanics. Each subject is very rich in science. This also has very strong engineering implications and applications.”

Deng’s research group targets three areas: building up fundamental knowledge on combustion processes and emissions; developing alternative fuels and metal combustion to replace fossil fuels; and synthesizing flame-based materials for catalysis and energy storage, which can bring down the cost of manufacturing battery materials.

One focus of the team has been on low-cost, low-emission manufacturing of cathode materials for lithium-ion batteries. Lithium-ion batteries play an increasingly critical role in transportation electrification (e.g., batteries for electric vehicles) and grid energy storage for electricity that is generated from renewable energy sources like wind and solar. Deng’s team has developed a technology they call flame-assisted spray pyrolysis, or FASP, which can help reduce the high manufacturing costs associated with cathode materials.

FASP is based on flame synthesis, a technology that dates back nearly 3,000 years. In ancient China, this was the primary way black ink materials were made. “[People burned] vegetables or woods, such that afterwards they can collect the solidified smoke,” Deng explains. “For our battery applications, we can try to fit in the same formula, but of course with new tweaks.”

The team is also interested in developing alternative fuels, including looking at the use of metals like aluminum to power rockets. “We’re interested in utilizing aluminum as a fuel for civil applications,” Deng says, because aluminum is abundant in the earth, cheap, and it’s available globally. “What we are trying to do is to understand [aluminum combustion] and be able to tailor its ignition and propagation properties.”

Among other accolades, Deng is a 2025 recipient of the Hiroshi Tsuji Early Career Researcher Award from the Combustion Institute, an award that recognizes excellence in fundamental or applied combustion science research.

❤️ Let's Sue the Government! | EFFector 37.15

EFF: Updates - Wed, 10/29/2025 - 1:06pm

There are no tricks in EFF's EFFector newsletter, just treats to keep you up-to-date on the latest in the fight for digital privacy and free expression. 

In our latest issue, we're explaining a new lawsuit to stop the U.S. government's viewpoint-based surveillance of online speech; sharing even more tips to protect your privacy; and celebrating a victory for transparency around AI police reports.

Prefer to listen in? Check out our audio companion, where EFF Staff Attorney Lisa Femia explains why EFF is suing to stop the Trump administration's ideological social media surveillance program. Catch the conversation on YouTube or the Internet Archive.

LISTEN TO EFFECTOR

EFFECTOR 37.15 - ❤️ LET'S SUE THE GOVERNMENT!

Since 1990 EFF has published EFFector to help keep readers on the bleeding edge of their digital rights. We know that the intersection of technology, civil liberties, human rights, and the law can be complicated, so EFFector is a great way to stay on top of things. The newsletter is chock full of links to updates, announcements, blog posts, and other stories to help keep readers—and listeners—up to date on the movement to protect online privacy and free expression. 

Thank you to the supporters around the world who make our work possible! If you're not a member yet, join EFF today to help us fight for a brighter digital future.

Pages